

Background

Metastasis comprises of intravasation, extravasation and new tumor formation at a secondary site in the body. Understanding the mechanism of metastasis and developing new platforms to study metastasis plays a critical role in both the diagnosis and the treatment of cancer.

Questions

Extravasation on a chip has been modeled before. Yet, the approach requires further optimization.

Figure 1: Design of LOC device. Left to the right: flow channel, matrix channel and medium channel.

Figure 3: a) PDMS LOC image and **b)** Image of PDMS LOC device after permanent bonding onto glass slide by UV/ozone treatment.

Methods

Figure 2: Master mold fabricated by UV litography technique.

Figure 4:Height of PDMS LOC device.

and flourescent images of endothelial cells.

References and acknowledgements

References: [1] Myers, D.R., Sakurai, Y., Tran, R., Ahn, B., Hardy, E.T., Mannino, R., Kita, A., Tsai, M., Lam, W.A. J. Vis. Exp. (64), e3958, DOI : 10.3791/3958 (2012). [2] Siddique A, Meckel T, Stark RW, Narayan S. Colloids Surf Biointerfaces 1;150:456-464 (2016).

Acknowledgements: The authors would like to thank TUBITAK (Grant no: 115E057 and 115Z428) for providing financial support to this project.

Optimization of a lab-on-a-chip device and method for quantification of extravasation

<u>Gizem Batı Ayaz¹, Müge Bilgen¹, Ismail Tahmaz¹, Devrim Pesen Okvur²</u> ¹Izmir Institute of Technology, Biotechnology and Bioengineering, Izmir, Turkey ²Izmir Institute of Technology, Molecular Biology and Genetics, Izmir, Turkey gizembati@iyte.edu.tr

LAM was better at promoting endothelial monolayer formation compared to FN and COL.

Figure 6: a) APTES-0.005 mg/ml type 1 COL, b) APTES-0.0125 mg/ml LAM, c) APTES – 0.0125 mg/ml FN.

Figure 5: Brightfield

Number of endothelial cells to be seeded was optimized to be 19736 cells / height of the blood vessel channel (µm) to form a continuous monolayer in APTES-Lam coated LOC device.

after loading HUVEC-C (2.6x10⁶/ml), b.End3 (2.3x10⁶/ml) b)

Figure 7: Different concentrations of b.End3 cells depending on different heights. **a)**5.8X10⁶/ml, **b)** 2.6x10⁶/ml, **c)** 2.3x10⁶/ml, **d)** 7.5x10⁶/ml

Results

Nucleus (DAPI) Actin (Phalloidin 647)

formation of cluster.

Figure 9: 3D images of endothelial cells after overnight incubation on post side. Then, 3x10⁶/ml concentration of cells was loaded into the LOC device.

did not diffuse from the flow channel into the matrix.

Figure 10: Fluorescent images of b.End3 cells were taken per 10 minutes in 2 hours after dextran 70kDa loading into the flow channel. Shear stress is 0.5 dyne/cm².

Fluorescently labeled breast cancer cells (MDA-MB-231) interacted with b.End3 cells and they extravasated through the endothelial monolayer into the matrix channel.

We have optimized surface coating, cell density and medium composition for successful mimicking of a blood vessel in a LOC device. The optimized method enables the determination of extravasation of cancer cells.

Presence of dextran in the endothelial cell suspension prevented

Real time imaging and analysis showed that 70 kDa fluorescent dextran

Conclusions

