出版物
当前位置:泰初科技(天津)有限公司 >> 技术支持 >> 出版物 >> 浏览文章
出版物

法国Elveflow微流控仪器应用出版物



Radmand A, Kim H, Beyersdorf J, Dobrowolski CN, Zenhausern R, Paunovska K, Huayamares SG, Hua X, Han K, Loughrey D, Hatit MZC, Del Cid A, Ni H, Shajii A, Li A, Muralidharan A, Peck HE, Tiegreen KE, Jia S, Santangelo PJ, Dahlman JE. Cationic cholesterol-dependent LNP delivery to lung stem cells, the liver, and heart. Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2307801120. doi: 10.1073/pnas.2307801120. 

阳离子胆固醇依赖性LNP向肺干细胞、肝脏和心脏的递送

在脂质纳米颗粒(LNP)中添加阳离子辅助脂质可增加肺递送并减少肝递送。然而,目前尚不清楚电荷依赖性趋向性是否是普遍存在的,或者是否取决于带电组分。本文报道了阳离子胆固醇依赖性趋向性可能不同于阳离子辅助脂质依赖性趋向性的证据。通过测试196个LNP如何向22种细胞类型递送mRNA,我们发现带电胆固醇与带电辅助脂质相比导致了不同的肺:肝递送比。我们还发现,将阳离子胆固醇与阳离子辅助脂质结合后,在心脏以及几种肺细胞类型(包括干细胞样群体)中导致了mRNA递送。这些数据突出了探索电荷依赖性LNP趋向性的实用性。


脂质纳米颗粒(LNPs)在静脉注射后可将RNA治疗传递至患者肝细胞。因此,人们对非肝组织的递送产生了兴趣,这通常通过三种方法实现。第一种方法是抑制LNPs的摄取或肝脏中治疗有效载荷的后续活性。第二种方法是将活性靶向配体(包括抗体或小分子)添加到LNPs上,使其从肝细胞中重定向。最后,第三种方法是修改LNP的化学成分,从而使内源性运输远离肝细胞。这可以通过设计可电离脂质或添加带电荷的辅助脂质来实现,这可以增加非肝:肝向性。在一个例子中,科学家们发现,通过分别添加正电荷或负电荷,RNA-脂质复合物被靶向肺或淋巴组织。在另一个例子中,用阳离子辅助脂质1,2-二油酰基-3-三甲基铵丙烷(DOTAP)取代两性离子磷脂1,2-二油酰基-sn-甘油-3-磷酸乙醇胺,将LNPs从肝脏重定向到肺。随后,其他观察结果也被报道,包括含有第五种阳离子组分的LNPs可以被重新定向到肺。考虑到在添加阳离子辅助脂质后增加肺:肝输送的一致性,一个合理的假设是电荷依赖性趋向是普遍存在的,因此任何正电荷组分都应该增加肺输送而减少肝输送。然而,其他观察结果表明LNP趋向可能是复杂的,包括胆固醇结构可以通过影响内吞作用来影响输送的数据。综上所述,这些数据使我们假设带电荷的胆固醇对非肝脏输送的影响可能与带电荷的辅助脂质不同。


1.jpg


4.jpg


5.jpg



Sobreira TJP, Avramova L, Szilagyi B, Logsdon DL, Loren BP, Jaman Z, Hilger RT, Hosler RS, Ferreira CR, Koswara A, Thompson DH, Cooks RG, Nagy ZK. High-throughput screening of organic reactions in microdroplets using desorption electrospray ionization mass spectrometry (DESI-MS): hardware and software implementation. Anal Methods. 2020 Jul 28;12(28):3654-3669. doi: 10.1039/d0ay00072h. Epub 2020 Jul 6. PMID: 32701099.

用解吸电喷雾质谱(DESI-MS)高通量筛选微滴中的有机反应:硬件和软件实现

本研究描述了一种基于在少量试剂中发生的加速反应,用于高通量筛选反应条件的自动化系统。反应混合物使用流体处理机器人以阵列格式制备,并以密度高达6144个/片的密度在平板聚四氟乙烯板上进行标记。反应和分析步骤同时进行,在到达质谱仪之前,使用解吸电喷雾电离(DESI)从板上释放含有反应混合物的微滴进行反应。分析速率每秒可达1个反应混合物,并使用离子阱质谱仪实时记录数据。信标化合物用于对板上的位置进行三角测量,这使得串联质谱(MS/MS)可以对感兴趣的确认产品进行检测。定制软件允许用户控制系统。它还用于接收来自DESI质谱仪的数据,以筛选感兴趣的化合物的光谱,执行MS/MS和保存数据。该定制软件还可以与控制流体处理机器人(Biomek i7)的软件以及用于制备反应混合物的Beckman软件以及用于控制用作DESI喷雾的溶剂的软件进行通信。记录n -烷基化、n -酰化和n -磺化反应的数据,连续3天进行8小时的实验,以建立系统的坚固性和可重复性。在此期间,重复性高(94-97%),假阴性6%(取决于所选择的噪声阈值)。含有384种反应混合物的板在7分钟内通过在喷雾器下移动DESI喷雾器而不是连续移动来分析。


系统硬件

DESI- ms HTS平台由5个核心硬件组件(图1(底部)和(3))组成,即一个流体处理工作站(Biomek i7, Beckman Coulter Inc.),其中包括一个pin工具和一个板架,一个SCARA机器人(PF3400, Precise Automation Inc.),一个DESI-2D成像平台(DESI 2D, Prosolia Inc.),一个LTQ XL质谱仪(Thermo Scientifc)和一个DESI喷雾溶剂输送系统(ElveFlow)。在HTS实验中,Biomek i7在微孔板中混合试剂,并使用图2(B)所示的引脚工具,将所得混合物以点阵列沉积在惰性聚四氟乙烯基板上。聚四氟乙烯基板托管在3d打印板支架的顶部,如图2(C)所示,该支架是定制设计的,用于管理不同设备的不同着陆配置,因为它通过平台从准备到分析,最终到存储。钉钉后,如图2(D)所示,一个基于磁性的伺服穿梭器将基板转移到Biomek i7后面的位置。SCARA随后将基板运送到附着在LTQ XL上的DESI 2D平台上。DESI阶段连接到压电溶剂输送系统(简称PieSDS),该系统在分析过程中输送DESI喷雾溶剂。


流体处理工作站

Biomek i7是一种双臂液体处理系统,具有多通道(384格式)和Span-8(8通道)一次性尖端(CAD图纸见ESI†图S.1)。多通道头用于在相同条件下(体积,高度,速度,混合,布局等)同时移液384个样品,而Span-8通道独立操作,可以以独特的模式转移样品。除移液外,还可以使用引脚工具(双浮板复制器,V&P Scientifc)转移试剂。该引脚工具由384个不锈钢开槽引脚组成(图2(B)),设计用于通过表面张力和毛细作用的组合传输50 nL的液体。该引脚工具可以磁性加载到多通道磁头上或从磁头上卸载。引脚是可重复使用的,可以通过超声波清洗。首先,将引脚浸入源板中,然后通过将引脚与表面接触将溶剂-溶质混合物的悬垂滴转移到目的板中。

高容量机器人甲板包含40个被动板支架,用于标准或深井板。如果需要长期实验,每个支架可用于单个板或几个板的堆叠。包括一个轨道振动器,用于在板中剧烈混合试剂。两个超声波浴针清洗和两个废物站使用的尖端也包括在内。两个抓手可以独立移动,在甲板内转移板或到发球梭,在那里他们可以到达SCARA。

为了便于操作液体处理机器人甲板上的玻璃板,我们制作了定制的塑料板载体(图2(C))。所述载体具有标准井板的足迹,并且所述板和载体的顶表面相互衬合,以便于钉住。由于每个板在实验期间都需要一个专用的载体,并且实验可能包括大量的板,因此3D打印作为制造载体的一种方便且具有成本效益的方法。我们还制作了一个立管板,当载体在Biomek i7甲板上时,它可以支撑每个载体(图2(C)中的黄色部分)。立板的目的是防止板载体上的SCARA抓握点被伺服穿梭架的框架遮挡。板载体和提升板的进一步设计细节见ESI中的图S.2。


压电喷雾溶剂输送系统(PieSDS)

PieSDS系统是首先由Szilagyi等人开发的,可以在DESI-MS分析过程中快速切换不同的喷雾溶剂和精确控制甲酸酯为了实现DESI-MS HTS平台,扩展了系统的硬件和软件功能,以实现可靠的自主操作。该系统由商用硬件组合而成。压电压力控制器(ElveFlow OB1 MK3)具有两个独立的压力通道,范围为0-2 bar,用于从一系列储层中输送溶剂。鉴于其压电性质,OB1 MK3具有低响应(9 ms)和低沉降时间(40 ms),压力函数低至0.005%。溶剂之间的切换是通过使用压电阀阵列(ElveFlow MUX流量开关矩阵)实现的。MUX阀阵列有16个两个位置的开关阀,阀门开启/关闭时间为25毫秒,保持容积<10 nL。通过热电温度传感器(ElveFlow MFS2)测量。MFS2的死体积在mLs范围内,当在溶剂切换之间需要清洗时,这是不可忽略的。据作者所知,所选设备在其类别中具有市场上最好的性能。PieSDS的工程图和CAD模型分别如图3(上)和(下)所示,可以精确、独立地控制两种溶剂流,并快速切换溶剂。

在筛分过程中,一个OB1通道对多达8个溶剂储层对称加压(图2(F))。为了控制溶剂成分,每个压力通道只有一个MUX阀打开。溶剂连接到相同的压力通道,因此不能相互结合。每个溶剂传感器被校准,来自两个压力通道的相同溶剂被t型结合并。然后,通过改变不同MUX阀的开启状态,可以方便地切换溶剂。之前的溶剂需要从混合器和混合器与DESI喷雾器之间的二氧化硅毛细管中清洗出来。在开发的配置中,从共轨中去除了相当大的MFS2s死体积,从而改善了溶剂切换时间。




Stehnach MR, Henshaw RJ, Floge SA, Guasto JS. Multiplexed microfluidic screening of bacterial chemotaxis. Elife. 2023 Jul 24;12:e85348. doi: 10.7554/eLife.85348. 

细菌趋化性的多重微流控筛选

微生物对环境化学梯度的感知和反应调节了无数微生物过程,这些过程对生态系统功能和人类健康和疾病至关重要。开发高效、高通量的微生物趋化筛选工具对于解开控制细胞营养摄取、毒素化学驱逐和微生物发病机制的不同化学化合物和浓度的作用至关重要。本文提出了一种新型微流控多路趋化装置(MCD),该装置使用连续稀释法在单芯片上同时进行六个平行细菌趋化实验,化学刺激物浓度跨越五个数量级。首先验证了MCD的稀释和梯度生成性能,然后将已建立的细菌趋化系统(溶藻弧菌)的测量趋化反应与标准微流控实验进行了比较。接下来,通过量化不同细菌(haloplanktis假单胞菌、大肠杆菌)对不同化学吸引剂和化学驱逐剂的趋化反应,评估了MCD的通用性。MCD极大地加快了趋化筛选过程,这对于破译微生物反应背后的复杂化学刺激海洋至关重要。


For chemotaxis assays, fluid flow was driven by a single pressure controller (Elveflow OB1; 1 mbar =100 Pa): pin,1−2 = 200 mbar (dilution layer) and pin,3−4 = 140 mbar (cell injection layer). Pressures were scaled down to 100 mbar and 70 mbar, respectively, for P. haloplanktis experiments. Between each chemotaxis assay, the fluid inputs were flowed for a minimum of 2  min to stratify cell, chemostimulus, and buffer streams in the observation channels.

Stehnach MR, Henshaw RJ, Floge SA, Guasto JS. Multiplexed microfluidic screening of bacterial chemotaxis. Elife. 2023 Jul 24;12:e85348. doi: 10.7554/eLife.85348. 



Chen Y, Chan HN, Michael SA, Shen Y, Chen Y, Tian Q, Huang L, Wu H. A microfluidic circulatory system integrated with capillary-assisted pressure sensors. Lab Chip. 2017 Feb 14;17(4):653-662. doi: 10.1039/c6lc01427e. 

集成毛细管辅助压力传感器的微流体循环系统

人类循环系统包括一个复杂的血管网络,它将生物相关器官和心脏连接起来,并驱动血液在整个系统中循环。在体外重建这个系统将成为器官芯片和“芯片上的身体”之间的桥梁,并促进体外模型的发展。本文提出了一种集成了芯片上压力传感器的微流体循环系统,以在体外紧密模拟人体系统循环。该设备中集成了一个类似心脏的芯片上泵浦系统。它由四个泵浦单元和被动止回阀组成,分别模拟四个心室和心脏瓣膜。每个泵浦单元都具有可调的压力和泵速,可独立控制,使用户能够控制设备内的模拟血压和心跳率。每个泵浦单元的下游都有一个止回阀,以防止向后泄漏。通过对四个泵浦单元进行编程,可以产生脉动和单向流,在设备内再循环。我们还报告了一种芯片上毛细管辅助压力传感器,以监测设备内的压力。将毛细管的一端置于测量区域,而另一端则被密封。通过记录毛细管中液气界面的运动并使用理想气体定律计算压力,测量了压力随时间的变化。传感器覆盖了人类生理相关的血压范围(0-142.5 mmHg),并能够对0.2 s的驱动时间做出响应。在传感器的帮助下,设备内部的压力可以调整到所需的范围。作为概念验证,该设备内部模拟了人类正常左心室和动脉压力分布。在芯片上培养人脐静脉内皮细胞(HUVECs),细胞能够对动脉样流动模式产生的机械力做出响应。



Hervé Straub; Flavia Zuber; Leo Eberl; Katharina Maniura-Weber; Qun Ren, In Situ Investigation of Pseudomonas aeruginosa Biofilm Development: Interplay between Flow, Growth Medium, and Mechanical Properties of Substrate, ACS Appl. Mater. Interfaces 2023, 15, 2, 2781–2791. DOI: 10.1021/acsami.2c20693.

铜绿假单胞菌生物膜发育的原位研究:流动与生长之间的相互作用

为了更好地了解生物材料力学性能和生长介质对细菌粘附和流动下生物膜形成的影响,我们利用微流控平台实时研究了铜绿假单胞菌在不同介质中对不同刚度聚二甲基硅氧烷(PDMS)的生物膜形成能力。用光学显微镜和自动图像分析记录铜绿假单胞菌的定植。细菌细胞内调节生物膜形成的环双胍酸盐(c-di-GMP)的水平被用推定的粘附素基因(cdrA)的转录作为代理来监测。与之前的假设相反,我们发现在测试范围内PDMS材料刚度对生物膜发育和生物膜结构的影响可以忽略不计,而培养基不仅影响生物膜发育的动力学,而且对生物膜的形态和结构也有显著影响。有趣的是,镁而不是先前报道的钙在致密P. aeruginosa聚集物的形成和高水平的c-di-GMP中起决定性作用。这些结果表明,虽然短期的粘附性分析对细菌和材料的相互作用提供了有价值的见解,但长期的评估对于更好地预测整体生物膜的结果至关重要。所研制的微流控系统为生物膜的原位发育研究提供了宝贵的应用潜力。


05112.jpg

0511jpg.jpg


压力控制器OB1 MK3+

Liridon Aliti; Alexander Shapiro; Simon Ivar Andersen, Microfluidic Study of Oil Droplet Stability in Produced Water with Combinations of Production Chemicals, Energy Fuels 2023, 37, 3, 1836–1847. DOI: 10.1021/acs.energyfuels.2c03294.


分离后排放的采出水含有痕量碳氢化合物,可能影响生态毒性。这些碳氢化合物可以是油滴,通过添加生产化学品及其混合物来稳定。这些化学物质严重影响了采出水在回注或排放到海洋之前的处理。应用微流控油滴生成技术,快速评价生产化学品组合对油滴稳定性的协同效应。在高速摄像机视频采集的基础上,计算了分散液滴的聚并频率。分散相要么是模型油,要么是井底原油样品,两者都是在水介质中。根据亲水-亲脂偏差理论,评价了一种商用破乳剂和缓蚀剂的单独和联合效果。实验证明,低至4ppm的油包水破乳剂可以稳定油包水滴,而缓蚀剂则会以油水段塞流的方式产生液滴。缓蚀剂与破乳剂的结合导致液滴粘附在通道表面。证明了正确的剂量和正确的生产化学品组合的重要性。微流控油滴生成技术是评价生产化学品对油滴稳定性影响的一种有价值的工具。



OB1 MK3微流控泵,磷脂双分子层,脂质双分子层。

Zabala-Ferrera, O.; Liu, P.; Beltramo, P.J. Determining the Bending Rigidity of Free-Standing Planar Phospholipid Bilayers. Membranes 2023, 13, 129. https://doi.org/10.3390/membranes13020129

我们描述了一种方法来确定膜弯曲刚度从电容测量大面积,独立,平面,生物膜。脂质膜的弯曲刚度是一种重要的生物力学特性,通常在囊泡中进行光学测量,但在平面无支撑系统中难以量化。为了实现这一目标,我们同时对由DOPC和DOPG磷脂组成的独立的、毫米面积的平面脂质双层成像并施加电势,以测量膜的杨氏(弹性)模量。然后将双分子层建模为相邻的两层弹性薄膜,从薄膜对电场的机电响应计算弯曲刚度。利用DOPC,我们发现用这种方法测定的弯曲刚度与现有的用中子自旋回波测定囊泡、用原子力谱测定支撑脂质双层和用微管抽吸巨大单层囊泡的工作很好地一致。我们研究了不对称钙浓度对对称DOPC和DOPG膜的影响,并量化了由此产生的弯曲刚度变化。该平台提供了创建控制脂质组成和水离子环境的平面双层的能力,并具有不对称改变两者的能力。我们的目标是利用这种高度的成分和环境控制,以及测量物理性质的能力,在未来研究各种生物过程。


Elveflow MPS1 压力传感器和传感器读数器MSR

Zhang, Jc., Chen, Sj., Ji, St. et al. Imaging dynamic water invasion behavior in microfractures based on microfluidics. J. Cent. South Univ. 29, 3986–4001 (2022). https://doi.org/10.1007/s11771-022-5202-7

煤岩裂隙中的流体侵入广泛存在于地下工程中。为明确裂隙中流体的微观动力学行为,利用三维形貌仪获得了苏拉特盆地煤的微米级裂隙,通过Stitching 算法重建完整的裂隙网络结构,并通过微流控技术批量制作表征裂隙结构的透明模型。利用多相流体显微成像系统可视化不同流速、润湿性条件下的流动过程,捕捉水相在微裂隙模型中完整的侵入过程。高流速可以促进水相侵入开度较小的分支通道,气水前缘保持较小的曲率削弱了滞后效应的影响,突破发生后可进一步增强在盲端、封闭结构中的侵入程度,突破后的含水饱和度增长较快。润湿性的转变影响水相侵入过程优势通道的选择,疏水环境中水相侵入突破时间短,较大的表面张力导致滞后效应的影响显著。突破后水相可继续侵入连通通道,但在封闭通道中的入侵率极低。研究成果对岩体非饱和条件下的岩-气-液作用机制具有重要的指导意义。


Elveflow OB1 MK3+微流体流量控制器,MUX Distribution12微流体双向分配阀和MFS3(0±80μL/min - water)热式流量传感器


Martijn van Galen, Annemarie Bok, Taieesa Peshkovsky, Jasper van der Gucht, Bauke Albada, Joris Sprakel, Rapid Molecular Mechanotyping with Microfluidic Force Spectroscopy, bioRxiv 2023.02.17.528971; doi: https://doi.org/10.1101/2023.02.17.528971

微流体力谱快速分子力学分型研究

分子力学分型是对机械力作用下超分子相互作用和化学键稳定性变化的量化研究,是机械化学领域的重要工具。这通常是在单分子力光谱(smFS)分析中完成的,例如使用光学镊子或原子力显微镜。虽然这些技术提供了详细的机械化学见解,但它们耗时,技术要求高且昂贵; 因此,高通量筛选感兴趣的分子的机械化学性质是具有挑战性的。为了解决这个问题,2023年2月19日,荷兰的瓦格宁根大学的Martijn van Galen教授团队在 BioRxiv发表题为“Rapid Molecular Mechanotyping with Microfluidic Force Spectroscopy”的研究论文,提出了一种快速、简单和低成本的机械分型方法: 微流体力谱(μFFS),它通过测量在流体动力作用下通过感兴趣的相互作用与微流体通道结合的微粒的脱离来探测力依赖的键稳定性。由于这允许同时观察数百个微粒,我们在一次测量中获得定量力学型,使用现成的设备。我们通过研究先前通过smFS表征的DNA双链的稳定性来验证我们的方法。我们进一步证明,我们可以通过模拟定量描述实验数据,这使我们能够将μFFS数据与单键力学化学性质联系起来。这为使用(μFFS)作为快速分子机械分型工具开辟了道路。



Aysan Razzaghi, Arun Ramachandran, Controlled collision of drops in extensional flow using a six-port microfluidic device, arXiv:2303.04979 [physics.flu-dyn], March 9, 2023.


两个分散的液滴在悬浮液基质中的碰撞是聚并的第一步。然而,为了量化合并的速度,碰撞的结构应该是可定义的,并且引起碰撞的力应该是可测量的。2023年3月9日,加拿大多伦多大学的 Aysan Razzaghi 教授团队在Arxiv Physics Fluid Dynamics发表题为“Controlled collision of drops in extensional flow using a six-port microfluidic device”的研究论文,提出了一种利用六端口微流体通道中的水动力来引导两个液滴在伸展流中碰撞的策略。通过在控制回路中实现解析解,可以使用单个控制参数确定将液滴导向各自目标点所需的流量。这个参数χ∗是一个无因次的时间尺度,它可以用两种方式之一来控制液滴:1)通过启动所有6个端口来产生具有两个滞点的流场(χ∗≪1),或2)通过关闭某些端口并通过剩余的活动端口产生线性扩展流(χ∗≠1)。我们确定了更适合六端口微流控通道中Hele-Shaw液滴碰撞的特定方向。基于上述策略,我们设计并实现了半径为~100 μm的Hele-Shaw全氟萘滴在硅油中的可控正面碰撞和掠射碰撞。利用保角映射技术建立了考虑Hele-Shaw液滴间流体动力相互作用引起的流场扰动的解析解。两个Hele-Shaw液滴在酒窝模式下发生正面碰撞时的聚并时间与流体动力流的应变速率无关。


With a six-port MEFD, however, the two drops are controlled by separate target points (Figure 5), and therefore, the head-on collision can be performed on the two drops as long as the liquid lasts in the pressure reservoirs.

The total loop time in our experiments is approximately 80 ms with the following time breakdown:

(1) grabbing the image by camera (~17 ms)

(2) performing image processing (~45 ms),

(3) computing of the flowrates and pressures through the analytical solution (~13 ms), and

(4) communicating with pressure controllers (~5 ms).

The comparable total loop time corresponding to MPC, according to Ref 31, is 33 ms. This is obviously shorter than our 80 ms time scale, but remember that the analysis was done using Labview® , an advanced data analysis and control software. We have done the computation and analysis using an interpreted language, MATLAB® , which is considerably slower. If Labview® is used, our computations would be much faster.


setup.jpg



Zhang, Xinjie, Shouyi Yu, Jianlong Dai, Ayobami Elisha Oseyemi, Linlin Liu, Ningyu Du, and Fangrui Lv. 2023. "A Modular Soft Gripper with Combined Pneu-Net Actuators" Actuators 12, no. 4: 172. https://doi.org/10.3390/act12040172

软性气动网络执行器(Soft Pneumatic-Network (Pneu-Net) Actuators (SPAs))由于其驱动形式简单、弯曲变形大,在软夹持器制造中得到了广泛的应用。然而,在复杂的软夹持应用环境中,常规SPAs的能力是不够的。2023年4月8日,河海大学的张鑫杰教授团队在MDPI Actuators发表题为“A Modular Soft Gripper with Combined Pneu-Net Actuators”的研究论文,在这项研究工作中提出了一种模块化的软夹持器,结合了规则和人字形执行器的功能。通过有限元仿真和实验验证了气动压力下两种致动器的弯曲变形特性。通过堵塞力测试、提升力测试、抓取力测试和吸力测试等一系列方法,对两种执行器的功能特性进行了实验研究。结果表明,规则执行机构具有较大的纵向弯曲变形和较高的阻塞力;而人字驱动器由于其纵向和横向的保形变形,具有较好的提升稳定性和抓握强度。此外,真空实验表明,该驱动器可以通过真空吸力提升较重的板状物体。基于这两个驱动器的功能特性,将所提出的模块化夹持器加载到自动化设备上,并对夹持器进行了挂钩、抓取或提升不同形状、大小和重量的各种物体的测试。本质上,该设计的模块化和多功能特征使其成为相对复杂和先进的夹持应用的有希望的候选者。


12.jpg


Seyedamirhosein Abdorahimzadeh, Feby W. Pratiwi, Seppo J. Vainio, Henrikki Liimatainen, Caglar Elbuken, Interplay of electric field and pressure-driven flow inducing microfluidic particle migration, Chemical Engineering Science, 2023, 118754, https://doi.org/10.1016/j.ces.2023.118754.

胶体颗粒在微流控通道内的横向迁移已经引起了人们的关注,因为它既有趣又适用于颗粒分离,如癌细胞分离或细胞外囊泡纯化。施加外加电场和压力驱动的流体就会引起这种横向迁移。在这项研究中,通过实验研究电场和压力驱动流动共同存在的6μm颗粒,发现了新的颗粒横向迁移模式。实验揭示了电场相对强度和压力梯度对确定粒子横向定位的重要性。我们假设,由外电场引起的极化不均匀性和由背景压力驱动流动引起的粒子旋转导致了这些横向迁移模式。这些新的迁移模式被进一步用于微粒分离,更重要的是,提出了一种新的分离方式。



Zhongyu Liu, Stephen Mackay, Dylan M. Gordon, Justin D. Anderson, Dustin W. Haithcock, Charles J. Garson, Guillermo J. Tearney, George M. Solomon, Kapil Pant, Balabhaskar Prabhakarpandian, Steven M. Rowe, and Jennifer S. Guimbellot. Co-cultured microfluidic model of the airway optimized for microscopy and micro-optical coherence tomography imaging. Biomedical Optics Express Vol. 10, Issue 10, pp. 5414-5430 (2019) •

https://doi.org/10.1364/BOE.10.005414.


SynALI-mucus-formation-and-biomarker-staining.jpg



OB1 MK3+ pressure-driven pump, MFS thermal-based flow sensors
Víctor P.Galván-Chacón, LauraCosta, DavidBarata, PamelaHabibovic. Droplet microfluidics as a tool for production of bioactive calcium phosphate microparticles with controllable physicochemical properties. Acta Biomaterialia. Available online 18 April 2021. https://doi.org/10.1016/j.actbio.2021.04.029




Ece Yildiz-Ozturk, Sultan Gulce-Iz, Muge Anil and Ozlem Yesil-Celiktas. Cytotoxic responses of carnosic acid and doxorubicin on breast cancer cells in butterfly-shaped microchips in comparison to 2D and 3D culture. Cytotechnology (2017) 69:337–347. DOI 10.1007/s10616-016-0062-3. PDF文档下载


两个MPS微流体压力传感器,Fusion100微流体注射泵, LabVIEW编程

M.BikuñaIzagirre, E.CarneroGonzález, L. Extramiana Esquisabel, J. Aldazabal, J. Moreno Montañés, J. Paredes Puente. Characterization of polycaprolactonebased electrospun scaffold towards in vitro human trabecular meshwork model. XXXVIII Congreso Anual de la Sociedad Española de Ingeniería Biomédica. 25 – 27 Nov, 2020. 下载链接:here



OB1 MK3+多通道压力控制器

François Yaya, Johannes Römer, Achim Guckenberger, Thomas John, Stephan Gekle, Thomas Podgorski, Christian Wagner. Vortical flow structures induced by red blood cells in capillaries. Biological Physics (physics.bio-ph). Cite as: arXiv:2102.12819 [physics.bio-ph]


OB1 MK3+多通道压力控制器

Nur Suaidah Mohd Isa, Hani El Kadri, Daniele Vigolo , Konstantinos Gkatzionis. Optimisation of bacterial release from a stable microfluidic-generated water-in-oil-in-water emulsion. RSC Advances ,  17 February 2021, Volume 11, pp 7738-7749; DOI:10.1039/d0ra10954a


MPS0微流体压力传感器,neMESYS1000N微流体注射泵

Yiotis, A., Karadimitriou, N.K., Zarikos, I. et al. Pore-scale effects during the transition from capillary- to viscosity-dominated flow dynamics within microfluidic porous-like domains. Sci Rep 11, 3891 (2021). https://doi.org/10.1038/s41598-021-83065-8


OB1 MK3+多通道微流体恒压&恒流泵 
Yong-Jiang Li, Miao Yu, Chun-Dong Xue, Hai-Jun Zhang, Guo-Zhen Wang, Xiao-Ming Chen, Kai-Rong Qin. Modeling of Endothelial Calcium Responses within a Microfluidic Generator of Spatio-Temporal ATP and Shear Stress Signals. Micromachines, 2021, Vol. 12, p.161. https://doi.org/10.3390/mi12020161

OB1 MK3+微流体恒压泵
Gonzalez-Gallardo, C.L., Díaz Díaz, A. & Casanova-Moreno, J.R. Improving plasma bonding of PDMS to gold-patterned glass for electrochemical microfluidic applications. Microfluid Nanofluid 25, 20 (2021). https://doi.org/10.1007/s10404-021-02420-3

OB1 MK3+恒压微流体泵系统
Arne L ̈uken, Lucas St  ̈uwe, Johannes Lohaus, John Linkhorst, and Matthias Wessling. Particle movements provoke avalanche-likecompaction in soft colloid filter cakes. 27 Jan 2021. DOI: 10.21203/rs.3.rs-152323/v1

以5Hz频率变化压力驱动的OB1 MK3+微流控压力泵
Zhenlin Chen, Tsz Fung Yip, Yonggang Zhu, Joshua W. K.Ho, Huaying Chen. The method to quantify cell elasticity based on the precise measurement of pressure inducing cell deformation in microfluidic channels. MethodsX, Volume 8, 2021, 101247. https://doi.org/10.1016/j.mex.2021.101247

MFP微流体在线压力传感器(压力量程为0-16Bar)
Martin Hofmannn, Alexandra Bayles, Jan Vermant. Stretch, fold and break : intensification of emulsification of high viscosity ratio systems by fractal mixers. American Institute of Chemical Engineers, 22 January 2021.  https://doi.org/10.1002/aic.17192

OB1 MK3+ pressure controller
Fatima Garcia Castro, Olivier de Sagazan, Nathalie Coulon, Antoni Homs Corbera, Dario Fassini, Jeremy Cramer, France Le Bihan. μ-Si strain gauge array on flexible substrate for dynamic pressure measurement. Sensors and Actuators A: Physical. Volume 315, 1 November 2020, 112274. https://doi.org/10.1016/j.sna.2020.112274

DUAL OB1 MK3+多通道正负压压力控制器(量程:-900mbar 到 1000mbar
Kunal Sharma, Neeraj Dhar, Vivek V. Thacker, Thomas M. Simonet, François Signorino-Gelo, Graham Knott, John D. McKinney. Dynamic persistence of intracellular bacterial communities of uropathogenic Escherichia coli in a human bladder-chip model of urinary tract infections. January 4, 2021. https://doi.org/10.1101/2021.01.03.424836


OB1 MK3+压电压力控制器, MFS3微流体流量传感器
Daniel A. Ferreira, Mario Rothbauer, João P. Conde, Peter Ertl, Carla Oliveira, Pedro L. Granja. A Fast Alternative to Soft Lithography for the Fabrication of Organ‐on‐a‐Chip Elastomeric‐Based Devices and Microactuators, Advanced Science, 2021, 2003273. https://doi.org/10.1002/advs.202003273

OB1 MK3+微流控流量控制器
Jesus Shrestha, Sean Thomas Ryan, Oliver Mills, Sareh Zhand, Sajad Razavi Bazaz, Philip Michael Hansbro, Maliheh Ghadiri and Majid Ebrahimi Warkiani. A 3D-printed microfluidic platform for simulating the effects of CPAP on the nasal epithelium. Accepted Manuscript online 9 February 2021. https://doi.org/10.1088/1758-5090/abe4c1

OB1 MK3+压力&流量控制器
Daniel A. Holland-Moritz, Innovations in Droplet Microfluidics for Enzyme Evolution, PhD thesis, 2020, the University of Michigan. DOI: https://deepblue.lib.umich.edu/bitstream/handle/2027.42/166115/dholla_1.pdf?sequence=1


OB1 MK3+ pressure controller with 200mbar
Tilvawala Gopesh; Andrew Camp; Michael Unanian; James Friend; Robert N. Weinreb. Rapid and Accurate Pressure Sensing Device for Direct Measurement of Intraocular Pressure,  Translational Vision Science & Technology February 2020, Vol.9, 28. doi:https://doi.org/10.1167/tvst.9.3.28


OB1 MK3+ microfluidic flow controller
Anirudh Kulkarni, Irene Elices, Nicolas Escoubet, Léa-Laetitia Pontani, Alexis Michel Prevost, Romain Brette, A simple device to immobilize protists for electrophysiology and microinjection, J Exp Biol. 2020 Jun 17;223(Pt 12):jeb219253. doi: 10.1242/jeb.219253.

OB1 MK3+ microfluidic flow controller
Bouhid de Aguiar, Izabella; Meireles, Martine; Bouchoux, Antoine; Schroën, Karin, Conformational changes influence clogging behavior of micrometer-sized microgels in idealized multiple constrictions, Scientific Reports 9 (2019). - ISSN 2045-2322, DOI: 10.1038/s41598-019-45791-y

OB1 MK3+ microfluidic control system
Dilshan Sooriyaarachchi, Yingge Zhou, Shahrima Maharubin, George Z. Tan, Microtube-Embedded Microfluidic Devices for Potential Applications in Blood Brain Barrier Research, Procedia Manufacturing, Volume 48, 2020, Pages 294-301, https://doi.org/10.1016/j.promfg.2020.05.050

OB1 MK3+ pressure controller
Pierre-Emmanuel Thiriet, Joern Pezoldt, Gabriele Gambardella, Kevin Keim, Bart Deplancke and Carlotta Guiducci, Selective Retrieval of Individual Cells from Microfluidic Arrays Combining Dielectrophoretic Force and Directed Hydrodynamic Flow, Micromachines 2020, 11(3), 322; https://doi.org/10.3390/mi11030322


DUAL OB1 MK3+ pressure controller with -900mbar to 1000mbar, MUX Injection valves
Tongcheng Qian, Daniel A. Gil, Emmanuel Contreras Guzman, Benjamin D. Gastfriend, Kelsey E. Tweed, Sean P. Palecekc  and  Melissa C. Skala, Adaptable pulsatile flow generated from stem cell-derived cardiomyocytes using quantitative imaging-based signal transduction, Lab Chip, 2020,20, 3744-3756, https://doi.org/10.1039/D0LC00546K

OB1 MK3+pressure controller with two channels, two MFS flow sensor, two bubble trap
Eleftheria Babaliari, Paraskevi Kavatzikidou, Anna Mitraki, Yannis Papaharilaou, Anthi Ranella, Emmanuel Stratakis, Combined effect of shear stress and laser-patterned topography on Schwann cell outgrowth: synergistic or antagonistic? Biomater Sci. 2020 Dec 23, DOI: 10.1039/d0bm01218a

OB1 MK3+pressure controller
Ismail Bilicana,Mustafa Tahsin Gulerb, Murat Serhatlioglu, Talip Kirindi, Caglar Elbuken, Focusing-free impedimetric differentiation of red blood cells and leukemia cells: A system optimization, Sensors and Actuators B: Chemical, Volume 307, 15 March 2020, 127531, https://doi.org/10.1016/j.snb.2019.127531

DUAL OB1 MK3+ pressure controller with -900mbar to 1000mbar
Samuel Sofela, Sarah Sahloul, Christopher Stubbs, et al, Phenotyping of the thrashing forces exerted by partially immobilized C. elegans using elastomeric micropillar arrays, Lab Chip, 2019,19, 3685-3696, https://doi.org/10.1039/C9LC00660E


OB1 MK3+ pressure controller
Chang Chen, Dong Xu, Siwei Bai, Zhihang Yu, Yonggang Zhu, Xiao Xing, and Huaying Chen, Dynamic screening and printing of single cells using a microfluidic chip with dual microvalves, Lab Chip, 2020,20, 1227-1237, https://doi.org/10.1039/D0LC00040J

OB1 MK3+ pressure controller with 200mbar
Zhenlin Chen, Yonggang Zhu, Dong Xu, Md. Mahbub Alam, Lingling Shui and Huaying Chen, Cell elasticity measurement using a microfluidic device with real-time pressure feedback, Lab Chip, 2020,20, 2343-2353, https://doi.org/10.1039/D0LC00092B

MUX flow switch matrix valve, NeMESYS290 syringe pump
Carla Mulas‡, Andrew C. Hodgson‡, Timo N. Kohler, et al, Microfluidic platform for 3D cell culture with live imaging and clone retrieval, Lab Chip, 2020, 20, 2580-2591, DOI: 10.1039/D0LC00165A


OB1 MK3+ pressure controller with two channels, MFS4 and MFS5 flow sensor

Xinjie Zhang, Kang Xia, Aimin Ji, A portable plug-and-play syringe pump using passive valves for microfluidic applications, Sensors and Actuators B: Chemical, Volume 304, 1 February 2020, 127331, https://doi.org/10.1016/j.snb.2019.127331


OB1 MK3+ pressure controller

Jing‐Tong Na, Chun‐Dong Xue, Yong‐Jiang Li, Yu Wang, Bo Liu, Kai‐Rong Qin, Precise generation of dynamic biochemical signals by controlling the programmable pump in a Y‐shaped microfluidic chip with a “christmas tree”inlet, Electrophoresis 2020, 41, 883–890, https://doi.org/10.1002/elps.201900400


OB1 MK3+ pressure controller with 2bar and 8bar, two MFS5 flow sensor

Flavia Bongiovì, Calogero Fiorica, Fabio Salvatore Palumbo, Giovanna Pitarresi, Gaetano Giammona, Hyaluronic acid based nanohydrogels fabricated by microfluidics for the potential targeted release of Imatinib: Characterization and preliminary evaluation of the antiangiogenic effect, International Journal of Pharmaceutics, Volume 573, 5 January 2020, 118851, https://doi.org/10.1016/j.ijpharm.2019.118851


two channels DUAL OB1 MK3+ pressure controller with -900mbar to 1000mbar, MUX Injection Vavles

Tongcheng Qian, Daniel A. Gil, Emmanuel Contreras Guzman, Benjamin D. Gastfriend, Kelsey E. Tweed, Sean P. Palecek and  Melissa C. Skala, Adaptable pulsatile flow generated from stem cell-derived cardiomyocytes using quantitative imaging-based signal transduction, Lab Chip, 2020,20, 3744-3756, https://doi.org/10.1039/D0LC00546K


OB1 MK3+ pressure controller

Khalil Moussi, Abdullah Bukhamsin, Tania Hidalgo, Jurgen Kosel, Biocompatible 3D Printed Microneedles for Transdermal, Intradermal, and Percutaneous Applications, Advanced Engineering Materials, 27 Novermber 2019, https://doi.org/10.1002/adem.201901358


OB1 MK3+ pressure controller

Rafał Walczak, Krzysztof Adamski, and Wojciech Kubicki, Inkjet 3D printed modular microfluidic chips for on-chip gel electrophoresis, 2019 J. Micromech. Microeng. 29 057001, https://doi.org/10.1088/1361-6439/ab0e64


OB1 MK3+ pressure controller, BFS flow sensor

Yağmur Demircan Yalçınab, SertanSukas,Taylan BerkinTöral, UfukGündüz, HalukKülah, Exploring the relationship between cytoplasmic ion content variation and multidrug resistance in cancer cells via ion-release based impedance spectroscopy, Sensors and Actuators B: Chemical, Volume 290, 1 July 2019, Pages 180-187, https://doi.org/10.1016/j.snb.2019.03.084


OB1 MK3+ pressure controller (0-8000mbar)

Giannitelli S.M., Chiono V., Mozetic P. (2021) Direct-Write Deposition of Thermogels. In: Rainer A., Moroni L. (eds) Computer-Aided Tissue Engineering. Methods in Molecular Biology, vol 2147. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0611-7_11


Four channels OB1 MK3+ pressure controller, four MFS flow sensor

Stanislav S. Terekhov, Ivan V. Smirnov, Anastasiya V. Stepanova, Tatyana V. Bobik, Yuliana A. Mokrushina, Natalia A. Ponomarenko, Alexey A. Belogurov Jr., Maria P. Rubtsova, Olga V. Kartseva, Marina O. Gomzikova, Alexey A. Moskovtsev, Anton S. Bukatin, Michael V. Dubina, Elena S. Kostryukova, Vladislav V. Babenko, Maria T. Vakhitova, Alexander I. Manolov, Maja V. Malakhova, Maria A. Kornienko, Alexander V. Tyakht, Anna A. Vanyushkina, Elena N. Ilina, Patrick Masson, Alexander G. Gabibov, and Sidney Altman, Microfluidic droplet platform for ultrahigh-throughput single-cell screening of biodiversity, Cell Host & Microbe, 2019, 26:1-10. https://doi.org/10.1073/pnas.1621226114


Alexandre Grassart, ValérieMalardé, Samy Gobaa, Anna Sartori-Rupp, Jordan Kerns, Katia Karalis, Benoit Marteyn, Philippe Sansonetti, Nathalie Sauvonnet, Bioengineered Human Organ-on-Chip Reveals Intestinal Microenvironment and Mechanical Forces Impacting Shigella Infection, Cell Host & Microbe, 2019, 26(3): 435 - 444. doi.org/10.1016/j.chom.2019.08.007


Y. Chen, H. N. Chan, S. A. Michael, Y. Shen, Y. Chen, Q. Tian, L. Huang and H. Wu, A microfluidic circulatory system integrated with capillary-assisted pressure sensors, Lab Chip, 2017,17, 653-662. DOI: 10.1039/C6LC01427E


S. Mohammad H. Hashemi, Petr Karnakov, Pooria Hadikhani, Enrico Chinello, Sergey Litvinov, Christophe Moser, Petros Koumoutsakosb and Demetri Psaltis, A versatile and membrane-less electrochemical reactor for the electrolysis of water and brineEnergy Environ. Sci., 2019, 12: 1592-1604. DOI: 10.1039/C9EE00219G

Qinglei Ji, Jia Ming Zhang, Ying Liu, Xiying Li, Pengyu Lv, Dongping Jin & Huiling Duan, A Modular Microfluidic Device via Multimaterial 3D Printing for Emulsion GenerationScientific Reports, volume 8, Article number: 4791 (2018).DOI

https://doi.org/10.1038/s41598-018-22756-1


Monika Scholz, Dylan J. Lynch, Kyung Suk Lee, Erel Levine, David Biron, A scalable method for automatically measuring pharyngeal pumping in C. elegansJournal of Neuroscience Methods , 2016, 274: 172-178.  https://doi.org/10.1016/j.jneumeth.2016.07.016


Xinjie Zhang, Kang Xia, Aimin Ji and Nan Xiang, A smart and portable micropump for stable liquid delivery, Electrophoresis, 09 January 2019https://doi.org/10.1002/elps.201800494

Xinjie Zhang & Zhixian Zhu & Zhonghua Ni & Nan Xiang & Hong Yi, Inexpensive, rapid fabrication of polymer-film microfluidic autoregulatory valve for disposable microfluidicsBiomed Microdevices  (2017) 19:21. DOI: 10.1007/s10544-017-0169-0

Martino, Chiara; Vigolo, Daniele; Solvas, Xavier Casadevall i; Stavrakis, Stavros; deMello, Andrew J, Real-time PEGDA-based microgel generation and encapsulation in microdroplets, 2016, PDF 下载.


Yangfan Chen, Ho Nam Chan, Sean A. Michael, Yusheng Shen, Yin Chen, Qian Tian, Lu Huang1 and Hongkai Wu, A microfluidic circulatory system integrated with capillary-assisted pressure sensors, Lab Chip, 2017,17, 653-662. DOI: 10.1039/C6LC01427E

Korine A. Ohiri, Sean T. Kelly,  Jeffrey D. Motschman, Kevin H. Lin, Kris C. Wood and Benjamin B. Yellen, An acoustofluidic trap and transfer approach for organizing a high density single cell array, Lab on a Chip, 2018. Cite this: DOI: 10.1039/c8lc00196k

Marianne Fenech,  Vincent Girod,  Viviana Claveria, Sebastien Meance,  Manouk Abkarian and Benoit CharlotMicrofluidic blood vasculature replicas using backside lithography, Lab on a Chip, 2019, 19: 2096-2106. DOI: 10.1039/C9LC00254E

Lior Salem, Benny Gamus, Yizhar Or, and Amir D. Gat, Leveraging viscous peeling in soft actuators and reconfigurable microchannel networks, arXiv: 1907.03286, PDF 下载.

Avinash Mamidanna, Christopher Lefky, Owen Hildreth, Drop‑on‑demand printed microfluidics device with sensing electrodes using silver and PDMS reactive inks, Microfluid Nanofluid, 2017, 21: 172. DOI10.1007/s10404-017-2010-8

D. F. Crawford, C. A. Smith & G. Whyte, Image-based closed-loop feedback for highly mono-dispersed microdroplet production, Scientific Reports, 2017, 7: 10545. DOI:10.1038/s41598-017-11254-5

Yağmur Demircan Yalçın, Sertan Sukas, Taylan Berkin Töral, Ufuk Gündüz, Haluk Külah, Exploring the relationship between cytoplasmic ion content variation and multidrug resistance in cancer cells via ion-release based impedance spectroscopy , Sensors and Actuators B: Chemical, 2019,290:180-187. DOI: https://doi.org/10.1016/j.snb.2019.03.084

Emerson Zang, Susanne Brandes, Miguel Tovar, Karin Martin, Franziska Mech, Peter Horbert, Thomas Henkel, Marc Thilo Figge* and Martin Roth*  , Real-time image processing for label-free enrichment of Actinobacteria cultivated in picolitre droplets, Lab on a Chip, 2013, 13, 3707. DOI: 10.1039/c3lc50572c


相关:
上一篇:Emulseo FluoSurf表面活性剂/液滴生成油/氟油7500/表面处理疏水试剂/液滴破乳剂
下一篇:HF2LI和UHFLI锁相放大器用于微流控电阻抗检测
Copyright©2017 泰初科技(天津)有限公司(Techu Scientific (Tianjin) Co., Ltd.) ICP主体备案号:津ICP备18001023号